
ar
X

iv
:2

10
3.

07
48

7v
1

 [
cs

.S
E

]
 1

2
M

ar
 2

02
1

1

How Developers Choose Names
Dror G. Feitelson Ayelet Mizrahi Nofar Noy

Aviad Ben Shabat Or Eliyahu Roy Sheffer

Department of Computer Science

The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

Abstract—The names of variables and functions serve as
implicit documentation and are instrumental for program com-
prehension. But choosing good meaningful names is hard. We
perform a sequence of experiments in which a total of 334
subjects are required to choose names in given programming
scenarios. The first experiment shows that the probability that
two developers would select the same name is low: in the 47
instances in our experiments the median probability was only
6.9%. At the same time, given that a specific name is chosen, it is
usually understood by the majority of developers. Analysis of the
names given in the experiment suggests a model where naming
is a (not necessarily cognizant or serial) three-step process:
(1) selecting the concepts to include in the name, (2) choosing
the words to represent each concept, and (3) constructing a
name using these words. A followup experiment, using the
same experimental setup, then checked whether using this model
explicitly can improve the quality of names. The results were that
names selected by subjects using the model were judged by two
independent judges to be superior to names chosen in the original
experiment by a ratio of two-to-one. Using the model appears to
encourage the use of more concepts and longer names.

Index Terms—variable naming, code comprehension

And out of the ground the Lord God formed every beast

of the field, and every fowl of the air; and brought

them unto Adam to see what he would call them:

– Genesis 2:19

I. INTRODUCTION

The names of variables and functions are a major part of

programs’ source code. In large open source projects about a

third of the tokens are identifiers, and they account for about

two thirds of the characters in the source code [12]. But the

importance of names is not based only on their volume. Their

importance stems from the fact that they serve as implicit

documentation, conveying to the reader the meaning of the

code and the intent of the developer who wrote the code [9],

[17]. In fact, sometimes names are the only documentation.

This is even advocated as part of the “clean code” approach,

which states “if a name requires a comment, then the name

does not reveal its intent” [28].

And indeed, it is generally agreed that meaningful names are

instrumental aids for program comprehension [17], [8], [34].

Programming courses therefore routinely require their students

to “use meaningful names”. Books on programming may

devote entire chapters to the issue of naming (e.g. McConnell’s

Code Complete [29, chap. 11] or Martin’s Clean Code [28,

Dror Feitelson holds the Berthold Badler chair in Computer Science. This
research was supported by the ISRAEL SCIENCE FOUNDATION (grants
no. 407/13 and 832/18).

chap. 2]). But there has been relatively little actual research

on what “meaningful names” means [26], and how to ensure

that names are meaningful.

One of the reasons that naming is problematic is that names

derive from natural language, typically from English. But

natural language is inherently ambiguous, including, for ex-

ample, synonyms (different words that mean the same thing),

polysemy (words with multiple meanings), and homonyms

(different words with identical spelling). As a result names

chosen by one developer may not convey the expected mean-

ing to another developer [12]. It is therefore interesting to see

how names are chosen in practice, and whether the process of

choosing names can be improved.

To investigate these issues we conducted a sequence of

experiments, using a total of 334 students and professional

developers as experimental subjects. The core experiments

present the subjects with several programming scenarios, and

elicit names for key variables, data structures, and functions

that are expected to be used in writing code for these scenarios.

The first and larger experiment checked spontaneous naming

based on each subject’s independent inclinations. Based on

the results of this experiment we developed a 3-step model

of how names are constructed: (1) selecting the concepts to

include in the name, (2) choosing the words to represent

each concept, and (3) creating a name from these words. The

second experiment then checked what names are generated by

subjects that have been introduced to this model explicitly,

using exactly the same scenarios as the first experiment. This

was followed by an assessment by two independent judges of

whether these names were superior over the names generated

in the first experiment.

Our main contributions are as follows:

• On the methodological level, we

1) Develop an experimental approach for studying how

names are chosen in various programming scenarios

without requiring the actual writing of voluminous

code;

2) Use bilingual experimental subjects to separate the

description of scenarios from the coding, thereby

reducing the danger that subjects would be guided

toward specific names by wording used in the de-

scriptions;

3) Introduce head-to-head competitions where judges

select the superior name from two candidates as a

means to assess the relative quality of names in a

given context.

http://arxiv.org/abs/2103.07487v1

• In terms of empirical results, we

1) Show that developers are indeed strongly influenced

by the description of a scenario when they choose

names in the context of that scenario;

2) Show that the probability that two developers would

choose the same name in the same situation is

typically very low;

3) Find that experienced developers tend to use longer

names composed of more words;

4) Characterize the structure of names and suggest

a 3-step model that could explain how they are

constructed.

• Finally, regarding practical implications, we

1) Demonstrate that developers can use the model of

name construction to guide the process of choosing

names;

2) Find that names chosen using the model tend to

contain more concepts, and are judged to be superior

by a ratio of two-to-one.

II. RELATED WORK

Practically all programming guidelines and textbooks state

that variables should be given “meaningful names”. But spo-

ken language is ambiguous, and people may use different

words to refer to the same concepts and operations. Furnas et

al. studied spontaneous word choice for the commands of an

interactive system, and found the variability to be surprisingly

high: in every case two people favored the same term with a

probability of less than 0.2 [16]. In a related vein, Hindle et

al. show that the vocabularies of different projects tend to be

more diverse than the commonly used vocabulary in natural

language [20]. We perform an experiment similar to that of

Furnas for variable and function names in code, and show

that high variability exists in this context too. To the best of

our knowledge such a study has not been performed before.

We also introduce a novel methodology, where the description

of the context is given in a different language (Hebrew) so as

to reduce the effect on subjects.

Several studies have shown the importance of good names.

Rilling and Klemola show that code fragments with high

identifier density may act as “comprehension bottlenecks”

[32]. Osman et al. demonstrated that names are crucial for

understanding UML diagrams—without them there is no clue

of what the different classes actually do [30]. Haiduc et al.

found that when summarizing code, developers tend to include

in the summary practically all the terms that appear in method

names, and the vast majority of terms in parameter types [18].

In an ethnographic study, Salviulo and Scanniello found that

experienced developers prefer to rely on variable names rather

than on comments for comprehension and maintenance [34].

Conversely, some studies have shown the detrimental effects

of bad names. Butler et al. found that flawed identifier names

are associated with low quality code [10]. Arnaoudova et al.

introduced the notion of “linguistic antipatterns” where names

are misleading [3]. Problematic situations include mismatch

of type, number, or behavior (e.g. a ‘set’ method that returns

a value). Avidan and Feitelson have shown that misleading

identifier names are worse than meaningless names like con-

secutive letters of the alphabet, as they may lead to errors

in program comprehension [4]. These results emphasize the

importance of identifier naming, and indicate that guidance

on naming identifiers may be beneficial.
Perhaps the most studied aspect of variable names is their

length, and in particular the possible use of abbreviations.

Binkley et al. suggest that long names tax memory, so a

limited length and a limited vocabulary are preferable [7].

Interestingly, even single-letter names may convey meaning,

provided the right letter is chosen [5], [40]. Several studies

have found that abbreviations do not have a significant effect.

Lawrie et al. found that in many cases abbreviations are just as

understandable as longer names [24]. Scanniello et al. showed

that full names did not help novice programmers find and fix

faults [35]. However, other studies claimed that abbreviations

are detrimental to comprehension. Takang et al. find that full

names are better than abbreviations [41], and Hofmeister et al.

and Schankin et al. claim that comprehension is faster with full

and descriptive names [21], [36].
Turning to suggestions for improving variable names,

Caprile and Tonella suggest standardization of variable names

using a lexicon of concepts and syntactic rules for arranging

them [11]. Deißenböck and Pizka stress the need for concise

and consistent naming [12]. Binkley et al. suggest rules

for enhancing the information expressed by field names [6].

Such approaches can mesh nicely with our model of name

construction.
The possibility of tool support for selecting names has

also been discussed. Allamanis et al. noted that automatic

suggestion of function or class names is harder than suggesting

variable names, because of the need to describe abstract

functionality [1]. Conversely, Liu et al. have shown that in

many cases the contents of the body of a function can be used

to construct a good function name [27]. Raychev used machine

learning on “big code” to predict variable names, achieving

62% accuracy [31], and Alon et al. exploit the code structure

to predict method names [2]. Our focus, in contradistinction,

is on helping developers think about naming.
At a deeper level of analysis, it is very interesting to

consider the interaction between code comprehension and cog-

nitive processes in the brain [26], [39]. Brooks has theorized

that names support top-down comprehension based on forming

hypotheses regarding what the code does [9]. Groundbreaking

work by Siegmund et al. using fMRI brain imaging has shown

that understanding source code activates parts of the brain

related to language processing [37]. In later work, Siegmund

et al. found evidence for using semantic chunking when

performing bottom-up comprehension tasks [38]. Fakhoury

et al. combined the fNIRS brain-imaging technique with eye

tracking to show that linguistic anti-patterns in the code corre-

late with cognitive load as measured directly in the brain [13].

Works like these contribute significantly to our understanding

and appreciation of the importance of naming.

III. EXPERIMENT ON NAME SELECTION

Our general goal is to better understand the issue of mean-

ingful names and their role in program comprehension. This

2

starts with basic science: understanding how names are formed

as part of understanding why naming is hard and sometimes

problematic. Our first experiment concerns how developers

choose names. It employs a survey, given to professional

developers and computer science students, to see what names

they choose in various scenarios, and how they understand

given names.

A. Research Questions

We concretize the above focus using the following research

questions:

RQ1) What is the probability that different developers will

select the same name in the same scenario?

To answer this question, we also need to consider two

sub-questions:

RQ1.1) Is name choice affected by the wording used in the

description of the scenario?

RQ1.2) Is name choice affected by demographics (e.g.

experience or sex)?

RQ2) How well do developers understand names chosen by

others?

RQ3) What is the structure of chosen names? In particular,

what is the distribution of name lengths, and to what

degree are multi-word phrases used?

B. Methodology

We use a survey on the Internet to present scenarios and

ask how relevant constructs would be named or how named

constructs are understood. This is an unusual experiment

because we are primarily interested in the variability between

subjects.

1) Survey Structure: The survey was structured as a se-

quence of independent scenarios. Each scenario lays out a

situation or a problem, followed by several focused questions.

Question types include:

• Suggest a name for a variable, constant, or data structure

(16 questions).

• Suggest a signature for a function, including its name and

its parameters (5 questions).

• Interpret a given variable or function parameter name (9

questions).

• Interpret a given function signature (6 questions). In

some cases this included writing a line of pseudo-code

to remove ambiguity.

A major problem in studying spontaneous naming is that the

description of the context and the question itself necessarily

use words. Being exposed to these words makes then more

accessible, and therefore subjects will tend to use words from

the description in the names they create. Thus providing

the description undermines the spontaneity we are trying to

characterize.

We reduce the accessibility problem by using multilingual

subjects. In particular, our subjects are typically native Hebrew

speakers who are also fluent in English. We can then provide

the description in Hebrew, and this is expected to have a

much smaller effect on the names chosen in English (which is

universally used in programming). As a control other subjects

are given the description in English, to establish whether the

accessibility effect indeed exists.
In all, 11 scenarios were defined, most of them including 3–

6 questions. 8 of the scenarios had both Hebrew and English

versions (see brief synopsis in Table I). The 3 scenarios that

had only a Hebrew version did not require respondents to pro-

duce names, but asked only about their understanding of given

names. 2 of the multi-version scenarios had 2 separate English

versions in addition to the Hebrew version, using different

wording in English. In total 121 questions were needed for all

the versions of all the questions. All experimental materials,

including a full listing of the survey questions, are available

for additional study and reproduction (see link at end).
2) Survey Execution: The survey was conducted using the

Qualtrics web-based platform. Subjects were presented with

6 randomly selected scenarios in a random order. For each

scenario, one version was selected at random; thus no subject

saw multiple versions of the same scenario. No personally

identifying data was collected. None of the questions were

compulsory; respondents could skip questions or stop without

completing the survey. In such cases, we use only the part that

was completed.
The survey was conducted in May 2018 in two phases: first

with professional developers and then with students. Devel-

opers were recruited via personal contacts with colleagues in

the high-tech industry and requesting them to propagate it.

Students were recruited in student labs by handing out the

link to the survey together with a chocolate treat. Altogether,

234 respondents answered at least one question.
The survey started with a few demographic questions. 75%

of the respondents were male, and 25% female. The most

common ages were in the range 24–27, but the mean age was

27.9 years. Experience ranged from 0 to 29 years, with an

average of 5.8 years. 70% identified themselves as students in

computer science or engineering.
3) Analysis of Results: Importantly, the survey questions

were open text and not multiple-choice, so as to give respon-

dents the opportunity to select names and express themselves.

This makes the analysis of the results much harder, as we need

to identify cases where different responses actually mean the

same thing. We automated part of this process, but much of

the analysis required going over the responses manually.
In order to compare names, we use a normalization proce-

dure. First, we identify suspicious cases and divert them for

manual inspection. We define suspicious names as

• having more that 30 characters.

• containing non alphanumeric or underscore characters.

In many cases, suspicious names were indeed not names but

comments by the experimental subjects (such as “I don’t know

what to do here”). Such answers were removed from further

consideration.
Second, names were normalized to lower case with words

separated by _. The normalization first partitions the name

into a sequence of words, using a regular expression that

recognizes camelCase and a variety of separators (-, _, .,

and white space). Each word is then converted to lowercase.

Finally the words are rejoined using _. Then names with a

3

English description

Hebrew description
none

benefit

treat

giftbonus
perk
point
prize

pamper

pinuk

none

benefit

function name

none
benefit

treat

gift
bonus

perk
point
prize

pamper
reward

pinuk

none

benefit

gift

variable name

none
benefit

treat

gift
bonus

perk
point
prize

pamper
reward

matanot

pinuk

none

benefit

gift

constant name

Figure 1. Choice of words for expressing the concept of “benefit” when the description was in English and explicitly used “benefit”, as opposed to a Hebrew
description that used the word “pinuk”. Variations on the same word (spelling or plurality) are shown together. “None” means that the concept was not represented
in the name.

Levenshtein distance ≤ 2 are identified. This means that one

name can be transformed into the other by up to 2 single-letter

edits (insertion, deletion, or substitution) [25]. This allows us

to avoid variability that actually reflects only spelling errors,

e.g. if someone wrote “bord” instead of “board”. All such

corrections were verified manually.

Questions about function signatures were handled similarly.

We use a regular expression for identifying a general C-like

function signature (optional return type, name, and parentheses

with a comma-separated list of arguments). Each name is then

displayed interactively to the analyst to identify its meaning

relative to the question. This step is necessary for function

parameters because experimental subjects may present the

parameters in arbitrary order. The answers are remembered

in case the same parameter name is used again later.

The hardest questions to analyze are those that require

the experimental subjects to say what they think some name

means. These answers were clustered based on our best

understanding into clusters of answers that essentially say the

same. In order to ensure that our classification is not too

subjective, we recruited an external analyst to check a sample

of the classifications. In nearly all cases, there was agreement.

C. Results

As noted, our survey included 121 questions answered by

234 subjects (each answering only a subset), in many cases

leading to a wide distribution of results. We cannot show all

of these results here. Rather, we focus on the main trends and

on interesting examples. The full raw results are available as

part of the experimental materials.

1) The Effect of Accessibility: Many of the questions

involved choosing names for variables, data structures, or

functions. As noted above, a potential problem with studying

this is the possibility of an accessibility effect: by describing

the scenario in which a name needs to be chosen, we expose

the subjects to specific words that are candidates for being

used in the name. To check this effect and answer RQ1.1 we

used bilingual subjects, and provided some of them with a

description in Hebrew rather than in English.

An example of the results obtained is shown in Fig. 1. The

scenario was the calculation of benefits accrued by using a

credit card, where a point is awarded for each 2000 Shekels

charged up to a maximum of 4 points per month. Three of the

questions were to name a function used to determine whether a

customer has additional benefit points available this month, to

name a variable storing the number of benefits available, and

to name the constant 4. The names suggested in each case were

varied, but most of them contained the concept of “benefits”.

When presented with an English description, practically all

the subjects actually used the word “benefit”. The Hebrew

description used the word “pinuk”, and this transliteration or

the translation to “treat” were the most common words used.

But subjects also used “gift”, “benefit”, “bonus”, and some

other terms.

Another example is shown in Fig. 2. In this case the

scenario was a mouse looking for cheese in a maze, and

the question was to name the data structure representing the

maze. This time two separate English descriptions were used:

one using the word “maze”, and the other using “labyrinth”.

The results show a strong accessibility effect, including when

the descriptions was in Hebrew, where the Hebrew word

4

maze

rooms
coordinates

graph
map

mavoh
labyrinth

Hebrew: mavoh

maze

location
array
map

matrix
universe

English: maze

maze

location
rooms
board
coordinates
graph

tree
area
structure

labyrinth

English: labyrinth

Figure 2. Choice of words used in naming a data structure describing a maze when the English description used “maze” or “labyrinth”, and when the description
was given in Hebrew using “mavoh”. Variations on the same word (spelling or plurality) are shown together. Words not related to the maze (e.g. “descriptor”) are
excluded.

different words
0 5 10 15 20

cu
m

ul
at

iv
e

pe
rc

en
t

0

20

40

60

80

100

Hebrew

English

Figure 3. Distributions of the number of different words used for the main
concept when naming variables.

“mavoh” was nearly universally translated to “maze”. The

most diverse results were obtained for the English description

using “labyrinth”, including quite a few subjects who chose

to simplify and use “maze”.

In other cases the differences were not as extreme as in these

two cases. The distributions of the number of different words

used for the main concept in the 36 questions on naming vari-

ables are shown in Fig. 3. Comparing the equivalent Hebrew

and English questions, in 9 cases responses to the Hebrew

one used more different words, in 4 cases the English version

led to using more words, in 2 cases the same number was

used, and in 1 the results were mixed (there were 2 English

versions, and the Hebrew result was in the middle). Thus the

Hebrew descriptions indeed typically led to a larger diversity

in word choice, or conversely, the English descriptions led to

more focus on fewer words. We conclude that accessibility

may be an issue, and using Hebrew descriptions (or another

foreign language) may reduce this effect.

2) Name Structure and Length: Names are often formed

be combining multiple words. Moreover, an empirical study

performed by Holzmann identified a trend where function and

variable names are becoming longer [22]. To answer RQ3, we

now characterize the given names in terms of their structure.

The distribution of the name lengths is shown in Fig. 4.

Function names tend to be slightly longer than variable names

(2.43 characters longer on average, p<0.0001 using t test). The

distribution of variable name lengths is bimodal. Names that

are composed of one word are typically 4–5 characters long,

variable name length
0 5 10 15 20 25 30 35

nu
m

be
r

of
 in

st
an

ce
s

0

20

40

60

80

100

120

140

160

180

7 words

6 words

5 words

4 words

3 words

2 words

1 word

function name length
0 5 10 15 20 25 30 35

0

20

40

60

Figure 4. Histogram of name lengths for variables and functions. Underscores
separating words are not counted.

and rarely exceed 9 characters. Names that are composed of

2 or more words are typically 8–16 characters long. Longer

names are typically composed of 3 or more words.

As indicated in the figure, the vast majority of names given

were composed of multiple words (78% of variable names

and 89% of function names). This also reflects the number of

different concepts included in names, which is discussed later.

RQ1.2 concerned the interesting question of whether demo-

graphic variables interact with name lengths. We first checked

the effect of experience. Following Falessi et al. [14] this

was not a simple classification into students and professionals;

rather, we define experienced developers to be those with at

least 5 years work experience (even if they are currently also

students), and inexperienced ones to be 1st or 2nd year BSc

students provided they have at most 2 years experience. In our

dataset, there were 100 experienced developers according to

this definition, 43 inexperienced students, and 75 participants

that fell in between (an additional 12 did not provide all the

required data).

Fig. 5 shows the distributions of name lengths chosen by

inexperienced vs. experienced developers. The result is that

the distribution of names chosen by experienced developers

5

name length [characters]
0 5 10 15 20 25 30 35

cu
m

ul
at

iv
e

pe
rc

en
t

0

20

40

60

80

100

inexperienced
students (N=302)

experienced
developers (N=694)

Figure 5. The cumulative distribution of name lengths given by inexperienced
and experienced developers. N refers to the number of names given.

dominates the distribution of names chosen by inexperienced

students. This means that for every name length, the prob-

ability for experienced developers to use a name of this

length or more is higher than the corresponding probability

for inexperienced ones. The difference is that on average

experienced developers use names that are 1.75 characters

longer (p<0.0001 using t test). This difference is largely the

result of experienced developers using names with more words

(and by implication, more concepts): 26.2% of the names by

inexperienced developers have only 1 word and the average

length is 2.03 words, as opposed to only 16.7% and 2.29 words

for experienced ones.

We also checked the effect of sex, and found no difference

in the lengths of names given by males and females: the

distributions of name lengths given by the two sexes were

practically on top of each other.

3) The Probability of Using the Same Name: The results

in Sect. III-C1 above are actually more about the naming of

concepts than the naming of variables. Variable and function

names tend to be more varied than the words used to denote a

concept, for two reasons. First, there can be variations on using

the same word, such as using it in the singular or in plural.

Second, variable and function names are often actually multi-

word phrases, and these components can be strung together in

different ways. As a result, complete names given by different

subjects are often unique.

We now return to RQ1. Table I summarizes the results

regarding the variability of names. The distribution of names

given as answers to a given question can be characterized by

two related attributes:

• diversity: the degree to which they are diverse. The

number of different names is shown in column dif. The

diversity is defined by normalizing this by the total

number of responses received (column div).

• focus: The degree to which names are focused. Column

max gives the number of times that the most popular

name was used. The fraction of responses that used the

same most popular name is shown in column Pmax.

Fig. 6 shows the distribution of the diversity and focus. We

use the results of only the Hebrew versions of questions, to

reduce the accessibility effect. As can be seen, in 80% of the

questions the most popular name was used in only 5-20%

of the answers. And in half of the questions the number of

different names given was equivalent to at least 3/4 of the

fraction of responses
0 0.2 0.4 0.6 0.8 1

cu
m

ul
at

iv
e

pe
rc

en
t

0

20

40

60

80

100

focus

diversity

Figure 6. Cumulative distribution of focus and diversity of names given in the
Hebrew questions.

number of answers. As may be expected, focus and diversity

are inversely correlated (Pearson correlation of −0.817 on 21

Hebrew questions).

The final column of Table I estimates the probability of two

developers to use the same name (answering RQ1). Note that

this is not the probability that any other respondent happened

to give the same name, as this obviously depends on the

number of respondents (the birthday paradox). Rather, we are

interested in the probability that a specific developer reading

the code would have chosen the same name as the specific

developer who wrote it in the first place. Assuming we observe

k distinct names, and using the relative popularity of name i as

an estimate for the probability of choosing it pi, the probability

of two developers choosing the same name is simply1

P2hit =

k∑

i=1

p2
i

(1)

In our results this ranges from 2.5% to 64.6%, with a median

of 6.9%.

4) Understanding Names: As opposed to active naming,

which often led to very diverse results as reported above, inter-

preting given names led to more uniform results. This answers

RQ2. In these questions respondents were asked to interpret

given names, function signatures, or function parameters. In

most cases nearly all of them agreed on the meaning. However,

they sometimes differed regarding technical details. The results

are shown in Table II.

As an example, we asked about the function pay(hours, rate)

in a factory setting. The consensus was that this refers to

paying for work done. But 49 thought that it calculates the

sum to pay, while 36 others thought it actually transfers the

funds. Only one mentioned both possibilities, and one came

up with a third possible meaning, suggesting that the function

defines an employee’s rate and required hours.

Another example concerned the function arrangeFilesBy-

Name(files). When asked what the function does, 98 of 100

agreed that it sorts a list of files, with 72 saying it is ordered

lexicographically, and 10 specifying ascending order. When

asked about the role of the parameter, all but one agreed that it

represents the files to sort. But when asked about the expected

1The same formula is used in similar circumstances in other fields, to wit
the Simpson diversity index in ecology, where pi represents the proportional
abundance of species i, and the Harfindahl Index measuring market concen-
tration, where pi is the market share of firm i.

6

Table I
Results of name reuse in all versions of questions concerned with giving names. Note that these results are for the complete names, not for concepts. N : number

of answers to this question version; dif: number of different names given; div=dif/N : diversity of names; max: maximal answers giving the same name;
Pmax=max/N : probability of most popular name (focus); P2hit: probability of two respondents using the same name.

Scenario Question Version N dif div max Pmax P2hit

benefits function checking if balance of benefits is positive Eng 54 38 0.703 8 0.148 0.0459
card Heb 41 40 0.975 2 0.048 0.0255

constant with value 4 (max benefits per month) Eng 55 26 0.472 14 0.254 0.1266
Heb 44 35 0.795 3 0.068 0.0340

constant with value 2000 (shekels per benefits point) Eng 55 45 0.818 5 0.090 0.0300
Heb 44 42 0.954 2 0.045 0.0247

variable with entitled benefits this month Eng 55 44 0.800 3 0.054 0.0267
Heb 44 41 0.931 2 0.045 0.0258

elevator variable with requested floor Eng 41 26 0.634 6 0.146 0.0577
Heb 49 28 0.571 8 0.163 0.0645

variable with current elevator location Eng 41 17 0.414 21 0.512 0.2861
Heb 49 19 0.387 21 0.428 0.2161

variable with number of floors to move Eng 41 29 0.707 5 0.121 0.0505
Heb 49 37 0.755 5 0.102 0.0362

variable with state of elevator doors Eng 40 18 0.450 12 0.300 0.1312
Heb 49 17 0.346 11 0.224 0.1303

file function checking if there is enough disk space to extend a file Eng 44 35 0.795 4 0.090 0.0361
system Heb 54 47 0.870 3 0.055 0.0240

field in file object describing file size Eng 44 11 0.250 21 0.477 0.3336
Heb 56 7 0.125 26 0.464 0.4164

bubble constant specifying work hours per week Eng 42 36 0.857 3 0.071 0.0328
gum Heb 43 35 0.813 5 0.116 0.0416
factory variable holding hourly wage during overtime Eng 42 24 0.571 10 0.238 0.0941

Heb 43 37 0.860 3 0.069 0.0319
ice cream function calculating how many sandwiches can be produced Eng 41 36 0.878 2 0.048 0.0303
sandwich Heb 47 44 0.936 2 0.042 0.0239
maze variable with location of the cheese today Eng-maze 27 18 0.666 8 0.296 0.1193

Eng-labyrinth 44 20 0.454 13 0.295 0.1363
Heb 35 24 0.685 5 0.142 0.0628

data structure tracking where the mouse has visited Eng-maze 27 13 0.481 9 0.333 0.1550
Eng-labyrinth 43 21 0.488 13 0.302 0.1346
Heb 35 26 0.742 7 0.200 0.0693

data structure describing the maze Eng-maze 27 10 0.370 17 0.629 0.4128
Eng-labyrinth 43 16 0.372 21 0.488 0.2742
Heb 35 8 0.228 28 0.800 0.6457

mine- function calculating game’s difficulty level Eng 45 25 0.555 8 0.177 0.0706
sweeper Heb 52 25 0.480 7 0.134 0.0680

variable with game’s time Eng 47 22 0.468 11 0.234 0.1027
Heb 51 29 0.568 7 0.137 0.0588

data structure indicating mine or number of adjacent mines Eng 43 33 0.767 5 0.116 0.0416
Heb 52 42 0.807 6 0.115 0.0340

tic-tac-toe function to display the game board Eng-board 40 15 0.375 16 0.400 0.1950
Eng-grid 27 15 0.555 4 0.148 0.0864
Heb 28 16 0.571 5 0.178 0.0943

data structure describing current state of game board Eng-board 40 25 0.625 8 0.200 0.0737
Eng-grid 26 16 0.615 4 0.153 0.0857
Heb 28 12 0.428 16 0.571 0.3443

return value, opinions differed. The most common response

(69 respondents) was that the function returns a sorted list of

files, but there were differences of opinion on whether this was

a list of file names, file references, or file indices. 29 said it

could be void, with 15 specifically mentioning in-place sorting.

7 expected a Boolean or numeric return code (one suggested

the number of files reordered).

These results are encouraging in the sense that even if

different developers tend to come up with different names

for things, they generally understand names chosen by others.

However, this may hide different assumptions regarding the

technical details underlying this general understanding, which

can lead to bugs.

Anticipating that understanding may be affected by ambi-

guity, we specifically designed two of the questions about

the meaning of names to be ambiguous, but without being

unrealistic. And indeed survey respondents understood them

in different ways.

The first ambiguous question concerned a library function

add(a,b), and asked what would be the result of calling

add([1,2,3],[4,5,6]). The most common response by far was to

understand the add operation applied to vectors as an element-

wise addition, leading to a result of [5,7,9] (some making an

arithmetic error). Others understood the add operation as a

concatenation, and said the result would be [1,2,3,4,5,6]. Only

four noted the ambiguity and gave both options.

The second ambiguous question concerned a function with

the signature resize(factor) applied to an image. When asked to

describe what this function does, 58% of respondents just said

it resizes the image. But 30% specifically said it enlarges the

7

Table II
RESULTS OF HOW VARIABLE NAMES OR FUNCTION SIGNATURES ARE UNDERSTOOD. N : NUMBER OF ANSWERS; FRACTIONAL NUMBERS INDICATE THAT

AN ANSWER INCLUDED TWO OPTIONS. PERCENTAGES MAY NOT SUM TO 100 WHEN IRRELEVANT ANSWERS (E.G. “UNCLEAR”) WERE OMMITTED.

Hebrew English
Scenario Code Interpretation N percent N percent

file arrangeFilesByName(files) returns ordered list of files 53 96.4% 44 97.8%
system show sorted list of files 1 1.8% 0 –

sort in place 0 – 1 2.2%

role of files parameter files to sort 23 88.5% 24 92.3%
path/reference to files 2 7.7% 2 7.7%
file sizes 1 3.8% 0 –

bubble pay(hours, rate) returns amount to pay 19.5 45.3% 30 68.2%
gum transfers funds to employee 22.5 52.3% 14 31.8%
factory set employee’s rate & hours 1 2.3% 0 –

role of hours parameter number of work hours 38 90.5% 37 86.0%
work hours since last paid 0 – 1 2.3%
work hours per month 3 7.1% 2 4.7%
work hours per week 1 2.4% 0 –
work hours per pay period 1 2.4% 2 4.7%

ice cream profit(units, cost, price) calculate profit from selling 46 95.8% 40 97.6%
sandwich calculate profit from buying 1 2.1% 0 –

total cost given unit cost 1 2.1% 0 –
profit per unit 0 – 1 2.4%

role of units parameter sandwiches produced/sold 44 93.6% 33 91.7%
amount of each ingredient 3 6.4% 3 8.3%

role of cost parameter producing cost per unit 35.5 77.2% 34.5 93.2%
total producing cost 5.5 12.0% 2.5 6.8%
producing cost 5 10.9% 0 –

role of price parameter selling price per unit 43 97.7% 38 100%
total seling price 1 2.3% 0 –

mine- expose(row, col) expose a tile 29 58.0% 24 55.8%
sweeper expose tile & execute game rules 10 20.0% 13 30.2%

expose tile & return its value 2 4.0% 0 –
update the GUI 1 2.0% 1 2.3%
execute game logic for move 1 2.0% 0 –
return tile value (has mine) 5 10.0% 2 4.7%
return list of neighboring mines 0 – 1 2.3%

tic-tac-toe make_turn(int row, int col) update board with mark at position 27 93.1% 63 92.6%
play the turn 2 6.9% 2 2.9%
move to given position 0 – 1 1.5%
initialize for input 0 – 1 1.5%

role of row parameter row index to be updated 29 100% 66 100%

role of col parameter column index to be updated 29 100% 66 100%

add return value of add([1,2,3], [4,5,6]) [5,7,9] 78 70.9%
[1,2,3,4,5,6] 23 20.9%
[6,15] 1 0.9%
21 1 0.9%
error / Boolean 5 4.5%

resize apply resize(factor) to an image resize the image 64 61.0%
enlarge the image 32 30.5%
shrink the image 3 2.9%
change pixel values 1 1.0%

image, and three said it shrinks it. In addition, we requested

respondents to write the line of code that updates the width of

the image. The result was that 60% multiplied the width by the

factor, while 5% divided it. An additional 4% multiplied by

the square root of the factor, indicating that they understood

the factor as applying to the area instead of to the individual

dimensions. An unanticipated popular response was to simply

set the width to the factor (22% of respondents).

IV. ANALYSIS AND MODEL OF NAME FORMATION

A model is the concise conceptual description of a system

or process. Scientific models are used to improve under-

standing of observed phenomena by focusing attention on

salient features and explaining the relationships between them.

We therefore analyzed the names produced by experimental

subjects in the experiment described above, in order to try

and model the process by which they were formed.

A. Initial Observations: Name Molds

The multi-word phrases used to create names are not all

different. In fact, many different names fall into the same pat-

tern, with only slight variations. These patterns can be viewed

as molds into which a chosen concept word is embedded

(which contributes to answering RQ3). Thus the multiplicity

of different names is largely the result of using multiple molds

in combination with multiple concept words.

8

Table III
The number of instances of names for the constant 4 (maximal benefits per

month) in the benefits card scenario, where names are presented as
combinations of using a mold with a concept word. In the molds, X stands for
the concept word (benefit, treat, etc.), which could appear in singular or plural.

Mold be
ne

fi
t

tr
ea

t
gi

ft
bo

nu
s

pe
rk

po
in

t
re

w
ar

d
pr

iz
e

pa
m

pe
r

pi
nu

k

X 2 1 1 - - - - - - -
max_X 16 2 1 1 2 - - 1 - 6
max_X_per_month 13 2 3 1 - 1 1 - 1 1
X_per_month 2 - - - - - - - - -
max_monthly_X 3 2 1 - - - - - - -
max_month_X 1 - - - - - - - - 1
max_X_num 3 - - - - - - - - -
X_max_num 1 - - - - - - - - -
max_number_of_X 1 1 - - - - - - - -
max_num_of_X 2 - - - - - - - - -
max_X_amount 1 - - - - - - - - -
max_acc_X 1 - - - - - - - - -
max_allowed_X 1 - - - - - - - - -
monthly_X_limit 1 1 - - - - - - - -

An example is given in Table III. This shows the molds

that were identified in the names suggested for the constant

4 in the benefits card scenario (both Hebrew and English

versions). This constant represents the maximal number of

benefits that may be accrued in any single month. For each

mold, the number of times it was used with each concept

word is shown. The most popular molds by far were max_X

and max_X_per_month, and the most popular concept word

was “benefit”. And while the combinations of these molds

and concept word dominate the table, another 26 combinations

were used by at least one subject.

Note, however, that the molds themselves can also be

viewed as containing additional concepts. This leads to a

multi-dimensional view of the names instead of the 2D view

of Table III. In particular, each of these names can be viewed

as being based on a combination of choices from the following

dimensions:

• Object: we are concerned with credit card benefit points.

This is what we identified as the concept word above.

Many different words were used in our experiment, with

a strong accessibility effect related to the description.

• Operation: we are counting the number of points accrued.

This is reflected by words like number (or num) or acc

(accumulated).

• Qualifier: specifically, this constant concerns the maximal

number of points. As this is the central function of this

constant, nearly all names included the word max.

• Time: the counting is reset periodically. This is reflected

by including month or monthly.

A closer observation shows that these dimensions do not

all have the same standing. The “object” and “qualifier”

dimensions are nearly universal, being present in nearly all

the names. But the “operation” and “time” dimensions are

alternates: each of the observed name molds used either one

or the other. Thus is appears that developers differed in their

opinions on whether it was worth while to extend the name

and include these concepts.

The above analysis is not unique to this specific example,

and in fact we claim it is fairly common (see Section IV

below). Another example is the following. The scenario pre-

sented was of a mouse looking for cheese in a maze, where the

location of the cheese was changed each day. The question was

to name the variable representing the location of the cheese

today. The answers can be dissected according to the following

dimensions:

• Location: this is obviously the main concern of this vari-

able. It was also the dimension with the widest variability,

employing the words location (or loc), coordinates (or

coord), position (or pos), place, target, room, and index.

• Object: a very focused dimension, with only one concept

word, cheese.

• Time: a dimension with 3 main representations: current

(or cur), today, and daily.

In this case, all 3 dimensions were nearly universal.

B. Analyzing Name Structures

Given the observation that names are composed of words

representing different concepts arranged in molds, we wanted

to analyze the number of concepts involved in each name

and the diversity of words used to represent each concept.

To collect this data we designed an interactive tool that helps

in the manual analysis of name structures.

The tool allows the analyst to select the question being

analyzed, and loads all the names given as answers to this

question. The names (normalized to lower-case with words

separated by _) are displayed in the rows of a table. The

analyst can then add columns to the table to represent different

concepts that appear in the names. For each name, the analyst

identifies words representing different concepts, and copies

them to the appropriate columns (creating new columns if

needed). The tool then scans all the following names, and if

these words appear in them too it automatically classifies them

in the same way. Thus the manual work is much reduced, and

each word has to be classified into a concept only once. The

tool then tabulates the distribution of the number of concepts

used in the variable names, and the distributions of the words

used for each concept.

The classification of words to concepts was performed by

two analysts independently. In cases of disagreement a third

analyst selected which classification to use. Finally, a fourth

analyst (the PI) reviewed all the classifications. Such a manual

oversight was thought to be needed because a mechanical

classification into words may miss their meaning in context.

For example, when naming the pay rate for overtime work, two

names that were suggested were overtime_hourly_rate_addition

and additional_hours_rate. We classified the additional_hours

phrase from the second as belonging to the same concept as

overtime from the first, and further noted that the second name

did not contain words representing the concepts of “additional

pay” and “per hour” (as a qualifier of “rate”). This is contrary

to a mechanistic identification of “hourly” with “hours” and

of “addition” with “additional”.

Note that essentially the same word may appear in different

forms, e.g. abbreviated or in plural. When classifying words

one has to decide whether to retain this variability or not. We

9

time game length apply

w
or

d
in

st
an

ce
s

0

5

10

15

20

25

30

35

40

45

time

timer

seconds
timestamp

clock
time_in_sec

game

play

elapsed

duration

total
length

span_elapsed
accumulated
life
since_start
so_far

current

start
remain
left

Figure 7. Words used for different concepts in a variable representing the time
playing minesweeper (Hebrew description, out of 51 responses).

decided to focus on the semantic level and not on the lexical

level, so we normalized all variants of the same word to one

basic form. In addition, if answers included more than one

optional name, we used only the first one.

An example of the results is shown in Fig. 7. The context

is the well-known minesweeper game, and the variable being

named represents the playing time. The most popular concept

included in the names was “time”, and the most popular word

to represent it was also “time”, but several other words were

also used. Other concepts were the fact that we are timing a

“game”, and an emphasis on the fact that we are interested in

the “length” of time. A few also noted what the time applied

to, usually that it was “current”.

Tables with identified concepts and words representing them

are included in the experimental materials.

C. Fashioning a Model

To model the process of selecting (or rather inventing)

names we pored over the above results, and noted the fol-

lowing phenomena:

• The repeated use of certain molds

• That different molds may contain the same concepts

• The repeated use of specific words to represent concepts

in the same or across different molds

We then asked what process could lead to these observations?

Taking the results into account, we believe the following

conceptual operational model is a good starting point for

understanding how developers choose names. We suggest that

name selection involves three choices:

1) Decide what concepts should be embedded into the

name.

2) Decide what word to use to represent each concept.

3) Decide on the structure of the name and the order of the

chosen words.

The decision of what concepts to include can be formu-

lated as the identification of the dimensions that should be

characterized. These dimensions are case specific, and the

decision on which dimensions to include is perhaps the major

decision in naming. The main consideration is to include

information regarding the intent behind using this variable

— what information it holds, and what it is used for. As

a practical matter, if it is felt that a comment is needed to

explain the variable’s objective, wording from the comment

should probably be included in the variable name. In certain

situations it may be prudent to also include an indication of

what kind of information this is, e.g. that a length is in the

horizontal or rather in the vertical dimension, or that a buffer

contains user input and should therefore be considered unsafe2.

After the input is checked, it can be stored in another variable,

with a name indicating that it is safe.

The second decision is what word to use to represent each

dimension. In many cases some dimensions are very focused,

with one specific word being the obvious choice. This can be

the result of simplicity or of an accessibility effect, where the

vocabulary used to describe the situation guides developers to

use the same terms. But in our experiments there was often

at least one dimension that was highly variable, with many

different contending words. Such diversity may cause prob-

lems down the road, if developers become confused whether

synonyms actually mean the same thing or represent nuanced

differences. Agreeing on a project lexicon and avoiding the use

of synonyms can help [12]; nuances are better replaced with

an additional word providing explicit distinctions. Additional

considerations when choosing words include that they be

easily distinguished from each other, not too long, memorable,

and pronounceable [23]. Adhering to such suggestions makes

the resulting names easier to work with.

The decision regarding the structure of a name can be

formulated as selecting a mold. A possible consideration

is to follow (English) language rules, e.g. that adjectives

come before nouns (which would suggest max_points over

points_max). One can perhaps even add a preposition to make

the name into a phrase [26]. Another obvious consideration is

to abide by a project’s naming conventions.

The model does not necessarily imply that these 3 steps are

cognizant choices made by the developers, nor that they are

done serially one after the other. Thus there may be significant

interplay between say the choice of concepts and the choice

of a mold. But the model provides a way to analyze common

behaviors by multiple developers in hindsight. And it explains

the commonalities between names given in our experiment.

Conversely, the model also explains the large variability that

is observed in names chosen for the same task: this is a result

of multiplying the number of options to make each of the

three choices. When there are many reasonable options, the

probability that two developers would select the same name is

low. This is the common case, and indeed the distribution of

this probability for all 47 questions listed in Table I shows that

in 80% of the questions the probability was less than 15% (Fig.

8). But when there is one dominant concept, and one dominant

word to represent it, this probability can become significant.

In our experiments there were two such cases: using maze for

2This is a variation on Hungarian notation; see https://www.joelonsoftware.
com/2005/05/11/making-wrong-code-look-wrong/.

10

p2hit
0 0.2 0.4 0.6 0.8 1

cu
m

ul
at

iv
e

pe
rc

en
t

0

20

40

60

80

100

Figure 8. Cumulative distribution of p2hit for all questions.

a data structure describing a maze, and using size for the field

describing the size of a file.

V. USING THE MODEL

As noted, we do not claim that the above model is indeed

used in a cognizant manner by developers. But what if it

was? Can the model guide developers in choosing names? Will

the names generated with the help of the model be superior

over names that are chosen without it? A second experiment

was performed to answer these questions. This experiment

is essentially a replication of the first experiment, with the

difference that subjects are first introduced to the model and

asked to use it when they choose names.

A. Research Questions

More formally, the research questions for the second exper-

iment were

RQ4) Does being cognizant of the name formation model

affect the names produced by developers?

RQ5) Are names produced with the model superior over names

produced without it?

B. Methodology

1) Changes to the Survey: The goal of the second exper-

iment was to check the possible effect of using the naming

model on the actual choice of names. To accomplish this we

first introduce the subjects to the model. This is done by

providing a brief description of the 3 steps, followed by an

example of using it. The example involved a new scenario —

creating a display to show scores in a bowling alley — that

was not part of the original survey. The example concerned

naming a variable holding the display shown to experienced

players, and included a comment about the option of dropping

one of the concepts leading to a different name.

In the interest of being able to compare the results, the

questions used in the second experiment were identical to

those in the first experiment. But given that the focus is

on giving names and not on understanding names, we used

only 7 of the original 11 scenarios. 5 of these scenarios had

English and Hebrew versions, and the other 2 had 2 English

versions and a Hebrew version. While we were interested

only in the questions regarding naming (and not those about

understanding), we decided to retain all the questions as in the

original experiment. The reason was that answering seemingly

redundant questions can nevertheless affect how the naming

questions are answered. Each scenario was preceded by a 2-

line reminder of the steps in the model.

A small pilot study with 3 subjects indicated that using the

model is time consuming, with subjects actually using paper

to write down concepts and words. We therefore toned down

the wording urging subjects to use the model, and reduced the

number of scenarios given to each subject to 3. As in the first

experiment, the scenarios were chosen at random, and subjects

were never given more than one version of the same scenario.

The survey was conducted again using the Qualtrics plat-

form, in May 2019 (one year after the first experiment). 100

subjects participated. 62% of the respondents were male, and

34% female. The mean age was 25.4 years, the average pro-

gramming experience was 3.6 years, and 77% were students.

The full listing of the survey, including the introduction of the

model, is available in the experimental materials.

2) Assessing the Quality of Names: After collecting the

results of the survey, the structure of the chosen names was

analyzed as in the first experiment. But to answer RQ5 we

need to assess the quality of the names given in the second

experiment relative to the names given in the context of the

same scenarios in the first experiment. To do this we devised

the following protocol.

1) First, we recruited two 3rd year students to serve as

external judges. We required two in order to compare

their judgments with each other. Importantly, the judges

did not know about the experiment or the model, thus

eliminating the danger of unintentional bias. The judges

worked independently, but performed exactly the same

tasks.

2) The judges judged all 7 scenarios. For each scenario,

they first read the description of the scenario to learn

the required background.

3) For each question in the scenario,

a) The judges read the question to understand what

was required.

b) Each judge independently reviewed 60 pairs of

variable names, and chose which one they thought

was the better name, based on their familiarity with

the question and their experience in programming.

In each pair one name was from the first experi-

ment and one from the second experiment, selected

at random uniformly with repetitions from all the

names given by subjects. Pairs that happened to be

the same name were discarded. The order of the

names in each pair was randomized.

We used 23 questions in total from all the scenarios together.

Viewing and judging 60 pairs of variable names for each

question led to a sum total of 1380 pairs, of which 24 were

removed as in retrospect we found they included non-names

that should have been excluded. Reading the scenarios and

questions and judging all these pairs took about 7–8 hours

of work. The judges were paid 500 NIS for their effort

(approximately $140).

11

exp. 1 avg. number of concepts
1 1.5 2 2.5 3

ex
p.

 2
 a

vg
. n

um
be

r
of

 c
on

ce
pt

s

1

1.5

2

2.5

3

exp. 1
names
longer

exp. 2
names
longer

Figure 9. Comparison of the average number of concepts used in variable
names in questions with Hebrew descriptions in the two experiments.

The end result was a dataset of 60 pairs of names for each

of the 23 questions, with the following attributes:

1) Which name came from the original experiment and

which from the experiment with the naming model.

2) Which name was presented first to the judges.

3) The judgments of the two judges as to which name was

better.

C. Results

1) Name Structure: To answer RQ4 we need to compare

the names produced by subjects in the second experiment with

the names produced by subjects in the first experiment. This

is done on a question-by-question basis. Our main concern is

with the structure of the names, and specifically, the number

of concepts that subjects chose to include.

Naturally, not all subjects used the same number of concepts

(or the same specific concepts) in their names. In particular, a

few subjects chose to include unique concepts that nobody else

thought were important. And the more subjects you have, the

higher the probability that someone will add a new concept. As

the number of subjects was different in the two experiments,

we needed to normalize the results.

We perform the normalization by repeated random sam-

pling from the larger group. Let N1 denote the number of

respondents in the first experiment, and N2 in the second.

Assume N1 > N2. for experiment 2, we simply report the

average number of concepts used by the N2 respondents.

But for experiment 1, we use a bootstrap-like procedure. We

sample N2 respondents out of the N1 available respondents,

and calculate the average number of concepts used by this

sample. We then repeat this 100 times. The average of the

100 repetitions is taken as the average number of concepts in

experiment 1.

The results are shown in Fig. 9. In this scatter plot, each

dot represents a question. The dots coordinates are the average

number of concepts used in the requested variable name (cor-

rected for sample size as described above). The results indicate

that in the second experiment, when subjects were coached

on using the model, they tended to use names with more

%
 o

f j
ud

ge
m

en
ts

0

20

40

60

80

100

fir
st

 b
et

te
r

se
co

nd
 b

et
te

r

di
sa

gr
ee

ag
re

e
w

hi
ch

 is
 b

et
te

r

%
 o

f a
gr

ee
d

ju
dg

em
en

ts

0

20

40

60

80

100

w
ith

 m
od

el
 b

et
te

r
w

ith
ou

t
be

tte
r

lo
ng

er
 n

am
e

be
tte

r
sh

or
te

r
be

tte
r

sa
m

e
nu

m
be

r
m

or
e

co
nc

ep
ts

be
tte

r

fewer

Figure 10. Classifications of the results of judging the quality of variable
names.

concepts. Focusing on the questions with Hebrew descriptions,

this happened in 10 cases and the names were 0.20 concepts

longer on average. In 6 other cases the names from the first

experiment were longer, by an average of 0.14 concepts.

2) Name Quality: We now turn to RQ5. The results of

judging the quality of variable names are shown in Fig. 10. The

left-most bar shows that the judges were largely unaffected

by the order in which names were presented: they preferred

the first name 52% of the time, and the second name in

the remaining 48%. Given the large number of judgments

performed this deviation from a 50–50 split is large, but it is

still not statistically significant (p=0.075 using binomial test).

The next bar shows that in 70% of the trials the two judges

agreed on the preferred name. In 30% they disagreed. Using

Cohen’s kappa to assess the degree of agreement yields κ =

0.366 which is considered a fair level of agreement.

Focusing on the 950 cases in which the judges agreed,

in 67% of them they judged the name chosen by subjects

using the model to be superior. Thus names chosen when

explicitly using the model were favored over names that were

chosen with no such framework by a ratio of 2:1. This and

the following results are all highly significant (p<0.0001).

When looking at the characteristics of the names, we found

that longer names were preferred in 74% of the cases in which

there was a difference in length (in 7% the names were the

same length). When considering concepts, in 36% of the cases

both names had the same number of concepts. But of the cases

where there were different numbers, the names with more

concepts were preferred in 83% of the cases. These results

agree with the previous results on the effect of using the model.

They indicate that the model helps by encouraging subjects to

create longer names, and to do so by including more concepts.

Note that this is different from creating longer names just by

being verbose.

3) Subjective Opinion: At the end of the survey we added

two questions regarding the model. The first simply asked

whether the model was used by the subject taking the survey.

The second asked whether the subject felt that the model

12

helped in choosing names. The results were that 52 respon-

dents reported that they used the model and 16 reported that

they did not. Of those that used the model, 35 reported that it

helped and the remaining 17 that it did not.

Using the data from respondents who claimed not to have

used the model implies that the results presented above re-

garding the benefits of the model should be considered as

conservative. We did not exclude such respondents from the

analysis to avoid reducing the number of samples, and the

issue of what to do with respondents who did not answer this

question. We further note that even if they did not use the

model explicitly, reading about it might have affected their

work.

VI. THREATS TO VALIDITY

Construct validity refers to the degree to which we can be

sure we are measuring what we set out to measure. One of

our goals was to measure spontaneous name choice, but this

may suffer from bias due to accessibility. We therefore used

Hebrew descriptions to avoid enhancing the accessibility of

English words. However, bilingual subjects may still translate

the Hebrew terms so some accessibility effect may remain.

This may also be affected by subjects’ differences in English

language knowledge. Lack of sensitivity to English nuances

can also affect the understanding of names. For example, we

speculate that native English speakers would not think that in

a call to resize(factor) the parameter is the new size.

Another threat exists in analyzing the structure the names.

We used a conservative approach to splitting a name into

words, which may miss some cases [19]. A harder problem is

identifying concepts. For example, do the terms full_time and

normal refer to the same concept in the context of working

hours? We used a protocol in which 2 analysts independently

coded the structure, another reconciled differences of opinion,

and a fourth reviewed the results. Still, other analysts may

prefer a different coding and this may lead to different results.

This can be resolved only by replication studies.

In addition, using an online survey may also lead to threats

to construct validity. Respondents to a survey may answer im-

mediately without thinking it through, whereas when actually

programming they may spend more time to consider things.

Also, they may skip the longish story introducing the ques-

tions, and guess the context from the questions themselves.

Internal validity is concerned with causation, i.e. whether

the results can indeed be attributed to differences between

treatments. In the first experiment, we are mainly concerned

with variation emanating from differences between subjects,

so the issue is moot. However, differences between treatments

also exist, e.g. when descriptions are given in Hebrew as

opposed to in English. One threat in this context is that

differences in English proficiency may also affect the results.

In the second experiment, we change the treatment by

introducing the model of name formation. Except for this

difference, the experiment is identical to the previous one,

so differences are indeed expected to be an outcome of this

change. However, we can not be sure that the differences are

due to using the model we had suggested. It is possible that by

suggesting the model we caused subjects to think more about

the naming, but the model itself had no effect. Settling this

threat would require a new set of experiments, as mentioned

below under suggestions for future work.

External validity refers to the generalizability of the results,

namely whether they can be expected to hold beyond the

specific experimental conditions that were used. A possible

issue is the use of bilingual subjects, in our case native Hebrew

speakers for whom English is a second language. While this

enabled us to mitigate the accessibility effect, it exposes us

to the risk that the results do no represent the behavior of

native English speakers. On the other hand, we note that many

developers in the world are not native English speakers.

Another well known risk to external validity is the question

of the experience of the subjects, and, specifically, whether

students can be used in lieu of professional developers.

This concern was mitigated to some degree by using both,

and ensuring that these labels indeed reflected differences in

experience. While we presented initial results showing that

naming is affected by experience, this issue certainly deserves

additional work.

In a related vein, we only used a modest number of example

scenarios, and found a diverse set of results. We make no

claim that our scenarios are necessarily representative, and

cannot infer any statistics on how common they are. Such

issues require extensive replications and variations by other

researchers in different contexts [15].

Finally, a major question concerns the validity of our model.

This is merely a conceptual model, and our only claim is that

it may be useful in understanding and perhaps also in guiding

naming. At the same time, other models are certainly possible.

VII. CONCLUSIONS

A. Summary of Results

Returning to our research questions, our results suggest

the following answers. For RQ1 the probability that different

developers would suggest the same name in the same situation

is very low. Our analysis suggests that this divergence is the

result of a multiplicative combination of possible choices at

the three steps of name creation: deciding what concepts to

include in the name, how to represent each concept, and how

to structure it all together.

Leading up to this result, for RQ1.1 we found that the choice

of words can be strongly affected by the wording used in

describing the scenario. A practical implication of this finding

is the importance of using a consistent vocabulary, and perhaps

even the desirability of maintaining a project lexicon to guide

programmers towards the use of mutually-agreed names [11].

In RQ1.2, we also found that experienced programmers tend

to choose slightly longer names.

For RQ2, we found that the divergence in choosing names

does not necessarily harm one’s ability to understand existing

names. But there are cases where names are misunderstood, or

when assumptions regarding technical details differ. It is hard

to anticipate when this will happen. Thus, the only way to

find and improve problematic names is to check. This implies

that developers should include naming issues explicitly in code

13

reviews: make sure reviewers understand names the same way,

and make the same assumptions about the named entities.

Regarding RQ3, we found that names tend to be multi-word

with an average of about 5 letters per word. Analyzing the

words used showed that they can typically be classified into

separate concepts. This led to the model of name formation,

in which the first two steps are to decide on the concepts to

include in the name and on the words that will represent each

concept.

RQ4 took the 3-step model of naming as its starting point,

and asked whether coaching programmers on using this model

would affect the variable names they choose. The results were

that indeed such an effect exists, and respondents who were

coached with the model tended to use longer names with

more concepts. In RQ5, we then found that these names were

generally also judged to be superior over names chosen by

respondents who had not been exposed to the model.

B. Future Work

While the reported experiments provide interesting new

information about how names are chosen and how the process

of choosing names may be improved, they also suggest several

venues for future work.

The most immediate are experiments to verify whether the

suggested model was indeed instrumental in creating better

names. For example, one could conduct an experiment in

which subjects are just asked to spend time thinking about

names, without any mention of the model. Alternatively, one

can instruct the subjects explicitly on the advantages of using

longer names with more concepts. If these experiments also

produce superior names, this may suggest easier ways to affect

naming by practitioners.

Assuming the model is accepted, additional experiments can

be designed to try to influence each step. However, these would

probably require work on a larger scale on real projects, and

not just on scenarios. Possible ideas include:

• Providing project-level documentation, and checking

whether the explicit identification of central concepts

encourages use of these concepts in names.

• Providing a project vocabulary and checking how it

affects word choice in names.

• Checking the effect of guidelines for name structures on

name choices and on name consistency.

Digging deeper, we note that naming may depend on

mindset. In a question about naming a variable that represents

the state of an elevator door, one answer included the comment

that, if it was a Boolean, the name would be is_open, but, if it

was an enumerated type, the name would be door_state. Hence

understanding the considerations that go into naming requires

more detailed information to be collected. This can be done

with think-aloud studies, where subjects are asked explicitly

to explain why they chose each name, or by using follow-up

questions asking about the rationale for names after-the-fact.

A related issue is that today many software developers

are not native English speakers, but programming — and

naming — are done in a predominantly English setting. Non

English speakers may choose sub-optimal names because they

are unaware of certain words’ connotations. Assessing the

prevalence of such problems and suggesting ways to mitigate

them are important research directions.

An especially intriguing issue is the relative importance and

quality of names: which of them convey the most meaning.

This has been investigated in the context of code summariza-

tion tasks, where developers have been observed to use names

in their summaries [18], [33]. It would be interesting to see

whether the selected names have any structural features in

common, and whether they can serve to educate how to instill

meaning into names.

Our study is thus just a first step. We achieved a superficial

description of name structure, and a possible model of how

names are formed. We also showed that it is possible to affect

and improve the process of naming. These results should

be followed by research on the interaction of naming with

cognitive processes in the brain [39]. For example, how are

names understood, and why are names with more concepts

better? And all told, do longer names increase the cognitive

load (you need to remember more) or reduce it (by providing

more information)? Answering such questions will provide a

scientific basis on which software engineering practices can

be built.

EXPERIMENTAL MATERIALS

The experimental materials and results are available at

http://bit.ly/names2019.

REFERENCES

[1] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate
method and class names”. In 10th Joint ESEC/FSE, pp. 38–49, Sep 2015,
DOI: 10.1145/2786805.2786849.

[2] U. Alon, S. Brody, O. Levy, and E. Yahav, “Code2seq: Generating
sequences from structured representations of code”. In 7th Intl. Conf.

Learning Representations, May 2019.
[3] V. Arnaoudova, M. Di Penta, and G. Antoniol, “Linguistic antipatterns:

What they are and how developers perceive them”. Empirical Softw. Eng.

21(1), pp. 104–158, Feb 2016, DOI: 10.1007/s10664-014-9350-
8.

[4] E. Avidan and D. G. Feitelson, “Effects of variable names on comprehen-
sion: An empirical study”. In 25th Intl. Conf. Program Comprehension,
pp. 55–65, May 2017, DOI: 10.1109/ICPC.2017.27.

[5] G. Beniamini, S. Gingichashvili, A. Klein Orbach, and D. G. Feitelson,
“Meaningful identifier names: The case of single-letter variables”. In
25th Intl. Conf. Program Comprehension, pp. 45–54, May 2017, DOI:
10.1109/ICPC.2017.18.

[6] D. Binkley, M. Hearn, and D. Lawrie, “Improving identifier in-
formativeness using part of speech information”. In 8th Working

Conf. Mining Softw. Repositories, pp. 203–206, May 2011, DOI:
10.1145/1985441.1985471.

[7] D. Binkley, D. Lawrie, S. Maex, and C. Morrell, “Identifier length and
limited programmer memory”. Sci. Comput. Programming 74(7), pp.
430–445, May 2009, DOI: 10.1016/j.scico.2009.02.006.

[8] S. Blinman and A. Cockburn, “Program comprehension: Investigating
the effects of naming style and documentation”. In 6th Australasian User

Interface Conf., pp. 73–78, Jan 2005.
[9] R. Brooks, “Towards a theory of the comprehension of computer pro-

grams”. Intl. J. Man-Machine Studies 18(6), pp. 543–554, Jun 1983,
DOI: 10.1016/S0020-7373(83)80031-5.

[10] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Exploring the
influence of identifier names on code quality: An empirical study”. In
14th European Conf. Softw. Maintenance & Reengineering, pp. 156–
165, Mar 2010, DOI: 10.1109/CSMR.2010.27.

[11] B. Caprile and P. Tonella, “Restructuring program identifier names”.
In Intl. Conf. Softw. Maintenance, pp. 97–107, Oct 2000, DOI:
10.1109/ICSM.2000.883022.

14

[12] F. Deißenböck and M. Pizka, “Concise and consistent naming”. In 13th
IEEE Intl. Workshop Program Comprehension, pp. 97–106, May 2005,
DOI: 10.1109/WPC.2005.14.

[13] S. Fakhoury, D. Roy, Y. Ma, V. Arnaoudova, and O. Adesope, “Mea-
suring the impact of lexical and structural inconsistencies on developers’
cognitive load during bug localization”. Empirical Softw. Eng. 2019,
DOI: 10.1007/s10664-019-09751-4.

[14] D. Falessi, N. Juristo, C. Wohlin, B. Turhan, J. Münch, A. Jedlitschka,
and M. Oivo, “Empirical software engineering experts on the use of
students and professionals in experiments”. Empirical Softw. Eng. 23(1),
pp. 452–489, Feb 2018, DOI: 10.1007/s10664-017-9523-3.

[15] D. G. Feitelson, “From repeatability to reproducibility and corrob-
oration”. Operating Syst. Rev. 49(1), pp. 3–11, Jan 2015, DOI:
10.1145/2723872.2723875.

[16] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais, “The
vocabulary problem in human-system communication”. Comm. ACM

30(11), pp. 964–971, Nov 1987, DOI: 10.1145/32206.32212.
[17] E. M. Gellenbeck and C. R. Cook, “An investigation of procedure and

variable names as beacons during program comprehension”. In Empirical

Studies of Programmers: Fourth Workshop, J. Koenemann-Belliveau,
T. G. Moher, and S. P. Robertson (eds.), pp. 65–81, Intellect Books,
1991.

[18] S. Haiduc, J. Aponte, and A. Marcus, “Supporting program comprehen-
sion with source code summarization”. In 32nd Intl. Conf. Softw. Eng.,
vol. 2, pp. 223–226, May 2010, DOI: 10.1145/1810295.1810335.

[19] E. Hill, D. Binkley, D. Lawrie, L. Pollock, and K. Vijay-Shanker,
“An empirical study of identifier splitting techniques”. Empirical Softw.

Eng. 19(6), pp. 1754–1780, Dec 2014, DOI: 10.1007/s10664-013-
9261-0.

[20] A. Hindle, E. T. Barr, M. Gabel, Z. Su, and P. Devanbu, “On the
naturalness of software”. Comm. ACM 59(5), pp. 122–131, May 2016,
DOI: 10.1145/2902362.

[21] J. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier names
take longer to comprehend”. In 24th IEEE Intl. Conf. Softw. Analysis,

Evolution, & Reengineering, Feb 2017.
[22] G. J. Holzmann, “Code clarity”. IEEE Softw. 33(2), pp. 22–25, Mar/Apr

2016, DOI: 10.1109/MS.2016.44.
[23] D. M. Jones, “The new C standard: An economic and cultural commen-

tary”, 2009. URL http://www.knosof.co.uk/cbook/cbook1_2.pdf.
[24] D. Lawrie, C. Morrell, H. Field, and D. Binkley, “What’s in a name?

a study of identifiers”. In 14th Intl. Conf. Program Comprehension, pp.
3–12, Jun 2006, DOI: 10.1109/ICPC.2006.51.

[25] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals”. Soviet Physics – Doklady 10(8), pp. 707–710, Feb
1966.

[26] B. Liblit, A. Begel, and E. Sweetser, “Cognitive perspectives on the role
of naming in computer programs”. In 18th Psychology of Programming

Workshop, pp. 53–67, Sep 2006.
[27] K. Liu, D. Kim, T. F. Bissyandé, T. Kim, K. Kim, A. Koyuncu, S. Kim,

and Y. Le Traon, “Learning to spot and refactor inconsistent method
names”. In 41st Intl. Conf. Softw. Eng., May 2019.

[28] R. C. Martin, Clean Code: A Handbook of Agile Software Craftmanship.
Prentice Hall, 2009.

[29] S. McConnell, Code Complete. Microsoft Press, 2nd ed., 2004.
[30] H. Osman, A. van Zadelhoff, D. R. Stikkolorum, and M. R. V. Chaudron,

“UML class diagram simplification: What is in the developer’s mind?” In
2nd Workshop Empirical Studies Softw. Modeling, art. no. 5, Oct 2012,
DOI: 10.1145/2424563.2424570.

[31] V. Raychev, M. Vechev, and A. Krause, “Predicting program properties
from “big code””. In 42nd Ann. Symp. Principles of Programming Lan-

guages, pp. 111–124, Jan 2015, DOI: 10.1145/2775051.2677009.
[32] J. Rilling and T. Klemola, “Identifying comprehension bottlenecks using

program slicing and cognitive complexity metrics”. In 11th IEEE Intl.

Workshop Program Comprehension, pp. 115–124, May 2003.
[33] P. Rodeghero, C. Liu, P. W. McBurney, and C. McMillan, “An eye-

tracking study of Java programmers and application to source code
summarization”. IEEE Trans. Softw. Eng. 41(11), pp. 1038–1054, Nov
2015, DOI: 10.1109/TSE.2015.2442238.

[34] F. Salviulo and G. Scanniello, “Dealing with identifiers and com-
ments in source code comprehension and maintenance: Results from
an ethnographically-informed study with students and professionals”. In
18th Intl. Conf. Evaluation & Assessment in Softw. Eng., art. no. 48,
May 2014, DOI: 10.1145/2601248.2601251.

[35] G. Scanniello and M. Risi, “Dealing with faults in source code: Abbre-
viated vs. full-word names”. In 29th Intl. Conf. Softw. Maintenance, pp.
190–199, Sep 2013, DOI: 10.1109/ICSM.2013.30.

[36] A. Schankin, A. Berger, D. V. Holt, J. C. Hofmeister, T. Riedel, and

M. Beigl, “Descriptive compound identifier names improve source code
comprehension”. In 26th Intl. Conf. Program Comprehension, pp. 31–
40, May 2018, DOI: 10.1145/3196321.3196332.

[37] J. Siegmund, C. Kästner, S. Apel, C. Parnin, A. Bethmann, T. Leich,
G. Saake, and A. Brechmann, “Understanding understanding source code
with funcional magnetic resonance imaging”. In 36th Intl. Conf. Softw.

Eng., pp. 378–389, May 2014, DOI: 10.1145/2568225.2568252.
[38] J. Siegmund, N. Peitek, C. Parnin, S. Apel, J. Hofmeister, C. Kästner,

A. Begel, A. Bethmann, and A. Brechmann, “Measuring neural effi-
ciency of program comprehension”. In 11th ESEC/FSE, pp. 140–150,
Sep 2017, DOI: 10.1145/3106237.3106268.

[39] M.-A. Storey, “Theories, tools and research methods in program compre-
hension: Past, present and future”. Softw. Quality J. 14(3), pp. 187–208,
Sep 2006, DOI: 10.1007/s11219-006-9216-4.

[40] A. Swidan, A. Serebrenik, and F. Hermans, “How do Scratch program-
mers name variables and procedures?” In 17th IEEE Intl. Working Conf.

Source Code Analysis & Manipulation, pp. 51–60, Sep 2017, DOI:
10.1109/SCAM.2017.12.

[41] A. A. Takang, P. A. Grubb, and R. D. Macredie, “The effects of
comments and identifier names on program comprehensibility: An ex-
perimental investigation”. J. Prog. Lang. 4, pp. 143–167, Sep 1996.

APPENDIX: THE SURVEY QUESTIONS

C. Minesweeper

Minesweeper is a known simple game defined as follows:

• The player is initially presented with a grid of undiffer-

entiated squares.

• Some randomly selected squares, unknown to the player,

contain “mine”.

• The game is played by revealing squares of the grid by

clicking them. One of the following will happen:

– If a square containing a mine is revealed, the player

loses the game.

– If no mine is revealed, a digit is displayed in the

square, indicating how many adjacent squares con-

tain mines.

– If there are no adjacent mines, a set of squares is

revealed - all the empty squares until (and including)

the boundary with numbered squares.

• The game purpose is to reveal all mine-free squares in

the shortest time.

1) Are you familiar with this game?

2) The game’s level of difficulty depends on the grid size

and the number of mines in it. Write a function signature

for a function which receives the above parameters and

returns the level of difficulty of the game.

3) How would you call the variable which holds the game

time?

4) We will have a data structure which assigns a number

to each square in the board as follows:

• -1 if the tile contains a mine

• The number of mines in the adjacent squares other-

wise

How will you name this data structure?

5) What do you think is the function of the following

interface: expose(row, col)?

D. Salary

In a large chewing gum company, workers earn hourly

(NIS). Every employee has a fixed hourly wage value.

15

1) Given the following interface:

pay (hours, rate)

What do you think the interface does?

2) What is the purpose of hours parameter?

3) What is the purpose of rate parameter?

4) Implement the interface.

Purim is right around the corner and the Mishlochei Manot

cause an increased demand for chewing gum. To overcome this

the factory manager encourages employees to work overtime

as follows:

• A full-time position requires 45 weekly work hours.

• After 45 weekly work hours, the hourly wage for the

employee increases by 10 ILS.

To implement this some variables were added:

• A constant containing the value 45

• A variable for the hourly wage during overtime pay

1) Name the constant containing the value 45.

2) Name the variable for the hourly wage during overtime

pay.

E. Maze [alternative version with “labyrinth”]

Columbus the mouse lives in a maze, in which every day

cheese is placed at a different location and he would like to

find out where is the cheese hidden. Columbus is a pedantic

mouse, and so he traverses all the rooms in an orderly fashion.

Specifically he does not re-enter a room which he already

visited.

Assuming you will be asked to write a program for Colum-

bus’ algorithm,

1) How would you call the variable holding the location of

the cheese today?

2) How would you call the variable (or data structure)

keeping track of where has he already visited?

3) How would you call the data structure describing the

maze?

F. Tic-Tac-Toe [alternative version with “game grid”]

Assuming you would need to write a program for playing

Tic-Tac-Toe,

1) How would you name the variable (or data structure)

describing the current state of the game board?

2) The implementation includes a function makeTurn(int

row, int col). What do you think it does?

3) What is the purpose of the “row” parameter?

4) What is the purpose of the “col” parameter?

5) Playing requires displaying the board to the user. Pro-

pose a function signature for this purpose (function name

+ parameters).

G. File Management

A computer program manages files. Files can be added

or deleted, and for each file, its size and name are stored.

Assuming you would need to write a program implementing

the file manager,

1) The implementation contains a class which describes a

file within the system. How would you name the field

describing the file’s size?

2) The implementation contains a function arrangeFilesBy-

Name(files). In your opinion, what does it do?

3) What is the role of the parameter? what is its type?

4) What do you think it returns?

5) The implementation includes a function that receives

a file, by how much we want to increase it, and the

available space on the disk, and checks whether there is

enough space. Suggest a signature for this function.

H. Ice Cream Sandwich

Summer is coming and Ori is planning to make some money

during his break. Ori loves ice cream and has a great ice

cream sandwich recipe. To make one sandwich the following

3 ingredients are needed:

• 2 chocolate biscuits

• Half a cup vanilla ice cream

• 20x10 cm wrapping paper

1) Write an API function signature to help Ori calculate,

given the quantities of ingredients he has, how many

sandwiches he can produce.

2) What do you think profit (units, cost, price) function

does?

3) What is the purpose of the “units” parameter?

4) What is the purpose of the “cost” parameter?

5) What is the purpose of the “price” parameter?

I. Elevator

The elevator in the CS building has broken. Parts of the

control system’s code were deleted and now students were

asked to re-implement them. You have the following functions

available for use:

• Open door.

• Close door.

• Go down a number of floors.

• Go up a number of floors.

as well as a field indicating the current position of the elevator.
Following is a piece of code implemented by Stav:

if (var1>var2)
direction = "Up"
var3 = var1 - var2
goUp(var3)

if (var1<var2)
direction = "Down"
var3 = var2 - var1
goDown(var3)

The original variable names have been replaced by var1,

var2, var3.

1) What does this code do?

2) Replace var1 with a name you would have used.

3) Replace var2 with a name you would have used.

4) Replace var3 with a name you would have used.

5) How would you call the variable describing the state of

the elevator’s door (open/closed)?

16

6) Stav wants to check whether the code was properly

corrected. She goes into the elevator on the 0 ground

floor and presses all the buttons together. It is expected

that the elevator will rise and open at each floor.

Write a pseudo code loop that passes all the floors in

ascending order from floor 0 and opens the door on each

floor.

J. Benefits Card

“Benefits card” is a credit card company which allows its

customers to accumulate benefits which can be exchanged for

various offers. Benefits are accumulated as follows:

• Benefits are accumulated once per month.

• A customer is entitled to 1 benefit for each 2,000 ILS

which are billed to the credit card during the previous

month.

• Up to 4 benefits can be accumulated per month.

• Benefit entitlement does not cross over to the next month.

Benefits not used during the month given will expire.

1) Name the constant holding the value 4 according to its

purpose.

2) Name the constant holding the value 2000 according to

its purpose.

3) Name the variable holding the number of benefits the

client is entitled to during the current month.

4) When a customer wants to use a benefit, the system

executes a function which works as follows:

Input:

• Number of benefits the customer is entitled to during

the current month

• Number of benefits the customer has used during

the current month

The function calculates the difference, and returns TRUE

if the balance is positive.

Write a function signature for this function.

K. Rock-Paper-Scissors [Hebrew only]

You want to implement the game Rock-Paper-Scissors.

The implementation includes a function whoWins(playerA,

playerB).

1) What do you think is the type of the return value?

2) What are possible values of the return value?

3) What are the roles of the parameters?

4) What are their types and possible values?

L. Add [Hebrew only]

A library contains the following function: Add(a, b). What

do you think is the return value of add([1,2,3], [4,5,6])?

M. Resize [Hebrew only]

In an image processing library there is a function re-

size(factor).

1) What do you think the function does?

2) An image object has a field specifying the image width.

Write the line of code that updates this field in the above

function.

17

	I Introduction
	II Related Work
	III Experiment on Name Selection
	III-A Research Questions
	III-B Methodology
	III-B1 Survey Structure
	III-B2 Survey Execution
	III-B3 Analysis of Results

	III-C Results
	III-C1 The Effect of Accessibility
	III-C2 Name Structure and Length
	III-C3 The Probability of Using the Same Name
	III-C4 Understanding Names

	IV Analysis and Model of Name Formation
	IV-A Initial Observations: Name Molds
	IV-B Analyzing Name Structures
	IV-C Fashioning a Model

	V Using the Model
	V-A Research Questions
	V-B Methodology
	V-B1 Changes to the Survey
	V-B2 Assessing the Quality of Names

	V-C Results
	V-C1 Name Structure
	V-C2 Name Quality
	V-C3 Subjective Opinion

	VI Threats to Validity
	VII Conclusions
	VII-A Summary of Results
	VII-B Future Work

	References
	3 Minesweeper
	4 Salary
	5 Maze [alternative version with ``labyrinth'']
	6 Tic-Tac-Toe [alternative version with ``game grid'']
	7 File Management
	8 Ice Cream Sandwich
	9 Elevator
	10 Benefits Card
	11 Rock-Paper-Scissors [Hebrew only]
	12 Add [Hebrew only]
	13 Resize [Hebrew only]

